Integrated study of copy number states and genotype calls using high-density SNP arrays
نویسندگان
چکیده
We propose a statistical framework, named genoCN, to simultaneously dissect copy number states and genotypes using high-density SNP (single nucleotide polymorphism) arrays. There are at least two types of genomic DNA copy number differences: copy number variations (CNVs) and copy number aberrations (CNAs). While CNVs are naturally occurring and inheritable, CNAs are acquired somatic alterations most often observed in tumor tissues only. CNVs tend to be short and more sparsely located in the genome compared with CNAs. GenoCN consists of two components, genoCNV and genoCNA, designed for CNV and CNA studies, respectively. In contrast to most existing methods, genoCN is more flexible in that the model parameters are estimated from the data instead of being decided a priori. GenoCNA also incorporates two important strategies for CNA studies. First, the effects of tissue contamination are explicitly modeled. Second, if SNP arrays are performed for both tumor and normal tissues of one individual, the genotype calls from normal tissue are used to study CNAs in tumor tissue. We evaluated genoCN by applications to 162 HapMap individuals and a brain tumor (glioblastoma) dataset and showed that our method can successfully identify both types of copy number differences and produce high-quality genotype calls.
منابع مشابه
Tumor classification based on DNA copy number aberrations determined using SNP arrays.
High-density single nucleotide polymorphism (SNP) array is a recently introduced technology that genotypes more than 10,000 human SNPs on a single array. It has been shown that SNP arrays can be used to determine not only SNP genotype calls, but also DNA copy number (DCN) aberrations, which are common in solid tumors. In the past, effective cancer classification has been demonstrated using micr...
متن کاملHidden Markov models for the assessment of chromosomal alterations using high-throughput SNP arrays.
Chromosomal DNA is characterized by variation between individuals at the level of entire chromosomes (e.g. aneuploidy in which the chromosome copy number is altered), segmental changes (including insertions, deletions, inversions, and translocations), and changes to small genomic regions (including single nucleotide polymorphisms). A variety of alterations that occur in chromosomal DNA, many of...
متن کاملAn integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays.
Changes in DNA copy number contribute to cancer pathogenesis. We now show that high-density single nucleotide polymorphism (SNP) arrays can detect copy number alterations. By hybridizing genomic representations of breast and lung carcinoma cell line and lung tumor DNA to SNP arrays, and measuring locus-specific hybridization intensity, we detected both known and novel genomic amplifications and...
متن کاملHybridization modeling of oligonucleotide SNP arrays for accurate DNA copy number estimation
Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address thi...
متن کاملA Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer
Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotyp...
متن کامل